
Helsing: Private Masternode Staking

Aaron Feickert

January 26, 2022

This technical note reflects work in progress and has not undergone indepen-
dent review. It should be considered experimental and unsuitable for production
use.

1 Introduction

Firo masternodes operate by a staking mechanism. To register as a mastern-
ode, a user stakes a fixed amount of Firo as collateral to a transparent address.
It then produces a registration transaction that specifies the node’s identify-
ing information, payout address, signing keys, and other auxiliary data. This
transaction is signed by the collateral output’s key to prove ownership. If the
collateral output is later spent, the masternode is deregistered. Each coinbase
transaction on the blockchain includes an output to a selected masternode’s
payout address, according to consensus rules.

In this technical note, we describe Helsing1, a protocol extension to Spark [1]
that allows for private staking operations not requiring transparent addresses or
outputs. Specifically, Helsing provides for Spark-compatible collateral staking
and coinbase payouts.

2 Cryptographic components

Throughout this technical note, let G be a prime-order group where the discrete
logarithm problem is hard, and let F be its scalar field. Let

Hstake,Hser′′ ,Hval′′ ,Hpayout : {0, 1}∗ → F

be cryptographic hash functions selected uniformly at random. Let

Hk,Hdiv,Hser,Hval

be the hash functions defined in [1], and let vmax be the maximum value pa-
rameter defined therein.

1In the Bram Stoker classic novel Dracula [2], Abraham van Helsing is a doctor and
professor who aids in the pursuit and destruction of the vampiric Count Dracula. It’s a
great read and worth your time.

1



2.1 Homomorphic commitment

Helsing requires a homomorphic commitment scheme. Such a commitment
scheme (at least) computationally binds a commitment to an input value and
mask, and perfectly hides the value.

The commitment scheme is a function Com : F2 → G that is homomorphic
in the sense that Com(v,m) + Com(v′,m′) = Com(v + v′,m+m′) for all values
v, v′ ∈ F and masks m,m′ ∈ F.

We assume the use of the Pedersen commitment scheme for this purpose.
Let ppcom = (G,F, G,H) be the public parameters for the construction, where
G,H ∈ G are independent generators with no efficiently-computable discrete
logarithm relationship. We then define Com(v,m) = vG+mH for all (v,m) ∈
F2.

Additionally, we extend this definition to a double-masked commitment
scheme, which is a function Comm : F3 → G with similar homomorphism.
We assume a natural extension of the Pedersen commitment scheme for this
purpose. Let ppcomm = (G,F, F,G,H) be the public parameteres for the con-
struction, where F,G,H ∈ G are independent generators with no efficiently-
computable discrete logarithm relationship. We then define Comm(v,m,m′) =
vF +mG+m′H for all (v,m,m′) ∈ F3.

These constructions are perfectly hiding and computationally binding. We
refer the reader elsewhere for details on the constructions and these well-known
security properties.

2.2 Representation proof

Helsing requires a zero-knowledge proving system asserting that the prover
knows the discrete logarithm of a given group element with respect to a specified
generator.

The representation proving system is a tuple (RepProve,RepVerify) of algo-
rithms for the following relation:

{pprep, G, Y ∈ G; y ∈ F : Y = yG}

Here pprep = (G,F) is a set of public parameters. The proving system is required
to be complete, special honest-verifier zero knowledge, and special sound.

The well-known Schnorr proving system may be used for this purpose. We
refer the reader elsewhere for the details and security proofs for this instanti-
ation. Note that a proof context message may be bound to the initial proof
transcript using the Fiat-Shamir construction to produce a signature.

2.3 Parallel one-of-many proof

Helsing requires a zero-knowledge proving system asserting that the prover
knows the discrete logarithms of a pair of commitments within a set of such
pairs. Much like in Spark spend transactions, this proof is used to produce
commitment offsets to serial and value commitments of coins comprising the

2



commitment set. In the context of Helsing, it provides (absent external in-
formation) ambiguity as to the coin being staked, and allows the commitment
offsets to be used later in an ownership and tag proof.

The proving system consists of a tuple of algorithms (ParProve,ParVerify)
for the following relation:{

pppar, {Si, Vi}N−1
i=0 ⊂ G2, S′, V ′ ∈ G; l ∈ N, (s, v) ∈ F :

0 ≤ l < N, Sl − S′ = Com(0, s), Vl − V ′ = Com(0, v)}

Here pppar = (G,F, n,m, ppcom) is a set of public parameters for the construc-
tion, where n > 1 and m > 1 are integer-valued size decomposition parameters,
and ppcom are the public parameters for a Pedersen commitment construction.

The Spark preprint describes an instantiation of such a proving system that
is complete, special honest-verified zero knowledge, and special sound.

2.4 Tag proof

Helsing requires a zero-knowledge proving system asserting that for a given
serial commitment offset and linking tag, the tag validly corresponds to a serial
commitment represented by the offset. In particular, this means that any spend
transaction consuming the coin must reveal the same tag. Further, the proof
asserts that the prover knows the secret data used to produce the staked coin’s
serial commitment.

The tag proving system is a tuple of algorithms (TagProve,TagVerify) for the
following relation:

{pptag, S′, T ∈ G; (x, y, z) ∈ F2 : S′ = xF + yG+ zH,U = xT + yG}

Here pptag = (G,F, F,G,H,U) is a set of a public parameters, where the val-
ues F,G,H,U ∈ G are independent generators with no efficiently-computable
discrete logarithm relationship.

The Spark preprint describes an instantiation of such a proving system that
is complete, special honest-verifier zero knowledge, and special sound; it further
describes how to bind a message to the proof transcript for a signature-like
unforgeability property. We note that the proving system represented by the
functions (ChaumProve,ChaumVerify) in [1] provides an aggregated form of this
relation that can be used for the non-aggregated relation presented here.

3 Collateral staking

We now introduce a collateral staking protocol that asserts a coin within a given
set is uniquely bound to a given stake value, and that a provided tag is correctly
generated from the coin. This allows a masternode owner to assert it controls
valid unspent collateral for node registration purposes. Further, the tag ensures
that any future transaction spending the collateral can be easily detected by
network participants in order to deregister the node. The protocol also allows

3



the owner to bind any registration-specific information, like the owner’s payout
address and node signing keys, to prevent replay and malicious registration.

To set up the protocol, select F,G,H,U ∈ G uniformly at random, and
choose integers n,m > 1 as input set size parameters. Set the following compo-
nent public parameters, which we refer to collectively as simply pp subsequently:

ppcom = (G,F, G,H)

ppcomm = (G,F, F,G,H)

pprep = (G,F)
pppar = (G,F, n,m, ppcom)

pptag = (G,F, F,G,H,U)

Set vstake ∈ F as the globally-fixed public parameter indicating the stake collat-
eral value required, where we require vstake ∈ [0, vmax). Set f ∈ F as a globally-
fixed public parameter indicating the fee required for the staking transaction.

We introduce two functions, Stake and StakeVerify, that comprise the collat-
eral staking protocol.

3.1 Stake

This function is used to assert control of unspent collateral in a signer-ambiguous
way.

The inputs to Stake are:

• Public parameters pp

• A full view key addrfull

• A spend key addrsk

• A set of N = nm input coins InCoins as part of a cover set

• For the coin Coin of value v+f to stake, its index in InCoins, serial number,
tag, and nonce: (l, s, T, k)

• Any implementation-specific context m to be bound to the resulting stak-
ing transaction structure

The algorithm outputs a staking transaction.
The algorithm proceeds as follows:

1. Parse the component D from addrfull.

2. Parse the components (s1, s2, r) from addrsk.

3. Parse the components {Si, Ci}N−1
i=0 from InCoins.

4. Compute the serial commitment offset:

S′ = Comm(s, 0,−Hser′′(s,D)) +D

4



5. Compute the value commitment offset:

C ′ = Com(vstake + f,Hval′′(s,D))

6. Generate a parallel one-of-many proof:

Πpar = ParProve(pppar, {Si, Ci}N−1
i=0 , S′, C ′;

(l,Hser′′(s,D),Hval(k)−Hval′′(s,D)))

7. Generate a representation proof of the collateral value:

Πval = RepProve(pprep, H,C ′ − Com(vstake + f, 0);Hval′′(s,D))

8. Generate a tag proof that additionally binds the context m into the initial
transcript:

Πtag = TagProve((pptag,Hstake(m)), S′, T ; (s, r,−Hser′′(s,D)))

9. Output the tuple (InCoins, S′, C ′, T,m,Πpar,Πval,Πtag).

The context m may include data on the masternode that is required for
network participants to process its registration. This may include the node’s
network address, signing keys, and payout Spark address. Any network partic-
ipant can watch future spend transactions; if it sees a valid spend transaction
revealing the tag T , then it knows the staked collateral has been spent and can
deregister the masternode.

3.2 StakeVerify

This function determines the validity of the output of a staking transaction
provided for masternode registration.

The inputs to StakeVerify are:

• Public parameters pp

• Staking transaction: (InCoins, S′, C ′, T,m,Πpar,Πval,Πtag)

The algorithm outputs 1 if the staking transaction is valid, and 0 if it is not.
The algorithm proceeds as follows:

1. If the tag T appears in any valid Spark spend transaction, output 0.

2. Verify that the context m is valid under implementation-specific rules, and
output 0 otherwise.

3. Parse the components {Si, Ci}N−1
i=0 from InCoins.

4. Check that ParVerify(pppar, {Si, Ci}N−1
i=0 , S′, C ′; Πpar), and output 0 if this

verification fails.

5



5. Check that RepVerify(pprep, H,C ′ − Com(vstake + f, 0); Πval), and output
0 if this verification fails.

6. Check that TagVerify((pptag,Hstake(m)), S′, T ; Πtag), and output 0 if this
verification fails.

7. Output 1.

Remark. Because collateral staking requires specification of an input ambiguity
set of possible coins being staked, it is important to consider the selection of this
set. In particular, a later transaction that spends the collateral and reveals the
tag generated in the collateral staking will also include an input ambiguity set.
The presence of these two sets with the same tag means that observers can infer
that the spent collateral coin must be contained in the intersection of the two
sets. For this reason, the two sets should overlap as much as possible, consistent
with consensus-specific size parameters and any other input set selection rules.
We note that input set selection in general is complex, and methods used should
be carefully analyzed.

4 Masternode payouts

Firo coinbase transactions select a masternode (using implementation-specific
rules outside the scope of this technical note) and construct a coin directed
to the masternode owner’s address. Currently, this is done using transparent
outputs. We introduce a method for performing payouts that is consistent with
Spark outputs and our staking transaction design. For this design, we assume
that staking transactions include each registered masternode’s Spark payout
address, and that the node selected for payout has not been deregistered.

We describe a new function Payout that generates a new type of transaction,
a payout transaction. Unlike mint and spend transactions in the Spark pro-
tocol, both the recipient address and payout value are public; this is required
so network participants can assert the validity of the payout with respect to
implementation-specific rules; this verification is done via a new PayoutVerify
function.

4.1 Payout

This function generates a payout transaction directed to a masternode’s Spark
payout address, and asserts the validity of the payout. It assumes the existence
of a block-specific identifier that is unique to the payout and can be inferred by
all network participants; this is used to deterministically generate the payout
and ensure unique coins in the event the node receives multiple payouts over
time to the same address.

The inputs to Payout are:

• Public parameters pp

6



• Payout public address addrpk

• Payout value vpayout

• Unique block-specific identifier j

The algorithm outputs a modified coin structure and auxiliary information as
a payout transaction.

The algorithm proceeds as follows:

1. Parse the address values (d,Q1, Q2) from addrpk.

2. Set k = Hpayout(j, d,Q1, Q2).

3. Compute the recovery key K = Hk(k)Hdiv(d).

4. Compute the serial commitment S = Comm(Hser(k), 0, 0) +Q2.

5. Compute the value commitment C = Com(vpayout,Hval(k)).

6. Let Coin = (S,K,C), and output the tuple (addrpk,Coin).

4.2 PayoutVerify

This function determines the validity of a payout transaction.
The inputs to PayoutVerify are:

• Public parameters pp

• Payout coin structure: (addrpk,Coin)

• Payout value vpayout

• Unique block-specific identifier j

The algorithm outputs 1 if the payout is valid, and 0 if it is not.
The algorithm proceeds as follows:

1. If addrpk does not meet implementation-specific rules as the correct payout
address, output 0.

2. If vpayout does not meet implementation-specific rules as the correct payout
value, or if vpayout ̸∈ [0, vmax), output 0.

3. Run Payout(pp, addrpk, j) = (addrpk,Coin
′).

4. If Coin′ = Coin, output 1; otherwise, output 0.

Remark. The existing protocol in [1] can be easily modified to account for pay-
out transactions. Even though we produce a modified coin structure in payout
transactions, coin identification and recovery proceed mostly as in [1]. At this
point, the recipient of the payout can use the coin in a standard spend trans-
action. Verification of payout transactions is done via PayoutVerify introduced
above.

7



References

[1] Aram Jivanyan and Aaron Feickert. Lelantus Spark: Secure and flexible
private transactions. Cryptology ePrint Archive, Report 2021/1173, 2021.
https://ia.cr/2021/1173.

[2] Bram Stoker. Dracula. Doubleday, Page & Co., Garden City, N.Y., 1920.

8

https://ia.cr/2021/1173

	Introduction
	Cryptographic components
	Homomorphic commitment
	Representation proof
	Parallel one-of-many proof
	Tag proof

	Collateral staking
	Stake
	StakeVerify

	Masternode payouts
	Payout
	PayoutVerify


